Carnegie Mellon University
Browse

Correlation-sharing for Detection of Differential Gene Expression

Download (728.73 kB)
journal contribution
posted on 2012-04-01, 00:00 authored by Robert Tibshirani, Larry Wasserman

We propose a method for detecting differential gene expression that exploits the correlation between genes. Our proposal averages the univariate scores of each feature with the scores in correlation neighborhoods. In a number of real and simulated examples, the new method often exhibits lower false discovery rates than simple t-statistic thresholding. We also provide some analysis of the asymptotic behavior of our proposal. The general idea of correlation-sharing can be applied to other prediction problems involving a large number of correlated features. We give an example in protein mass spectrometry.

History

Date

2012-04-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC