Carnegie Mellon University
Browse

Cuts, Trees and l 1 Embeddings of Graphs

Download (380.32 kB)
journal contribution
posted on 1983-01-01, 00:00 authored by Anupam Gupta, Ilan Newman, Yuri Rabinovich, Alistair Sinclair
Motivated by many recent algorithmic applications, this paper aims to promote a systematic study of the relationship between the topology of a graph and the metric distortion incurred when the graph is embedded into ℓ1 space. The main results are: 1. Explicit constant-distortion embeddings of all series-parallel graphs, and all graphs with bounded Euler number. These are the first natural families known to have constant distortion (strictly greater than 1). Using the above embeddings, algorithms are obtained which approximate the sparsest cut in such graphs to within a constant factor. 2. A constant-distortion embedding of outerplanar graphs into the restricted class of ℓ1-metrics known as "dominating tree metrics". A lower bound of Ω Hgr(log n) on the distortion for embeddings of series-parallel graphs into (distributions over) dominating tree metrics is also presented. This shows, surprisingly, that such metrics approximate distances very poorly even for families of graphs with low treewidth, and excludes the possibility of using them to explore the finer structure of ℓ1-embeddability.

History

Publisher Statement

All Rights Reserved

Date

1983-01-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC