Deciding Bit-Vector Arithmetic with Abstraction
We present a new decision procedure for finite-precision bitvector arithmetic with arbitrary bit-vector operations. Our procedure alternates between generating under- and over-approximations of the original bit-vector formula. An under-approximation is obtained by a translation to propositional logic in which some bit-vector variables are encoded with fewer Boolean variables than their width. If the underapproximation is unsatisfiable, we use the unsatisfiable core to derive an over-approximation based on the subset of predicates that participated in the proof of unsatisfiability. If this over-approximation is satisfiable, the satisfying assignment guides the refinement of the previous underapproximation by increasing, for some bit-vector variables, the number of Boolean variables that encode them. We present experimental results that suggest that this abstraction-based approach can be considerably more efficient than directly invoking the SAT solver on the original formula as well as other competing decision procedures.