Decisions from experience reduce misconceptions about climate change
Research has shown widespread misconceptions in public understanding of the dynamics of climate change: A majority of people incorrectly infer that carbon-dioxide (CO2) concentrations can be controlled by stabilizing emissions at or above current rates (correlation heuristic), and while emissions continuously exceed absorptions (violation of mass balance). Such misconceptions are likely to delay actions that mitigate climate change. This paper tests a way to reduce these misconceptions through experience in a dynamic simulation. In a laboratory experiment, participants were randomly assigned to one of two conditions: description, where participants performed a CO2 stabilization (CS) task that provided them with a CO2 concentration trajectory over a 100 year period and asked them to sketch the corresponding CO2 emissions and absorptions over the same period; and experience, where participants performed the same task in a dynamic climate change simulator (DCCS), followed by the CS task. In both conditions, half of the participants were science and technology (STEM) majors, and the other half were non-STEM. Results revealed a significant reduction in people’s misconceptions in the experience condition compared to the description condition. Furthermore, STEMs demonstrated better performance than non-STEMs. These results highlight the potential for using experience-based simulation tools like DCCS to improve understanding about the dynamics of climate change.