Carnegie Mellon University
Browse
- No file added yet -

Decomposition-Based Optimal Market-Based Planning for Multi-Agent Systems with Shared Resources

Download (888.29 kB)
journal contribution
posted on 2018-06-29, 20:24 authored by Sue Ann Hong, Geoffrey J. Gordon

Market-based algorithms have become popular in collaborative multi-agent planning due to their simplicity, distributedness, low communication requirements, and proven success in domains such as task allocation and robotic exploration. Most existing marketbased algorithms, however, suffer from two main drawbacks: resource prices must be carefully handcrafted for each problem domain, and there is no guarantee on final solution quality. We present an optimal marketbased algorithm, derived from a mixed integer program formulation of planning problems. Our method is based on two wellknown techniques for optimization: DantzigWolfe decomposition and Gomory cuts. The former prices resources optimally for a relaxed version of the problem, while the latter introduces new derivative resources to correct pricing imbalances that arise from the relaxation. Our algorithm is applicable to a wide variety of multi-agent planning domains. We provide optimality guarantees and demonstrate the effectiveness of our algorithm in both centralized and distributed settings on synthetic planning problems.

History

Publisher Statement

Copyright 2011 by the authors

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC