Carnegie Mellon University
Browse

Degrees of freedom in lasso problems

Download (361.98 kB)
journal contribution
posted on 2004-09-22, 00:00 authored by Ryan TibshiraniRyan Tibshirani, Jonathan Taylor

We derive the degrees of freedom of the lasso fit, placing no assumptions on the predictor matrix X. Like the well-known result of Zou, Hastie and Tibshirani [Ann. Statist. 35 (2007) 2173–2192], which gives the degrees of freedom of the lasso fit when X has full column rank, we express our result in terms of the active set of a lasso solution. We extend this result to cover the degrees of freedom of the generalized lasso fit for an arbitrary predictor matrix X (and an arbitrary penalty matrix D). Though our focus is degrees of freedom, we establish some intermediate results on the lasso and generalized lasso that may be interesting on their own.

History

Publisher Statement

All Rights Reserved

Date

2004-09-22

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC