This paper presents a new and efficient method, based on stochastic annealing, to identify optimal design configurations from a large number of process alternatives, considering the effects of uncertainty. Case studies of an integrated coal gasification combined cycle (IGCC) power plant are presented to illustrate this method. For this case, the new stochastic synthesis framework reduced computational time by 60% compared to an exhaustive search procedure. Greater efficiencies are expected as the number of process configurations increases.