Carnegie Mellon University
Browse
- No file added yet -

Diffusion of Lexical Change in Social Media

Download (1.67 MB)
journal contribution
posted on 2014-11-01, 00:00 authored by Jacob Eisenstein, Brendan O'Connor, Noah A. Smith, Eric P Xing

Computer-mediated communication is driving fundamental changes in the nature of written language. We investigate these changes by statistical analysis of a dataset comprising 107 million Twitter messages (authored by 2.7 million unique user accounts). Using a latent vector autoregressive model to aggregate across thousands of words, we identify high-level patterns in diffusion of linguistic change over the United States. Our model is robust to unpredictable changes in Twitter's sampling rate, and provides a probabilistic characterization of the relationship of macro-scale linguistic influence to a set of demographic and geographic predictors. The results of this analysis offer support for prior arguments that focus on geographical proximity and population size. However, demographic similarity – especially with regard to race – plays an even more central role, as cities with similar racial demographics are far more likely to share linguistic influence. Rather than moving towards a single unified “netspeak” dialect, language evolution in computer-mediated communication reproduces existing fault lines in spoken American English.

History

Publisher Statement

© 2014 Eisenstein et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Date

2014-11-01

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC