Carnegie Mellon University
Browse

Directional Associative Markov Network for 3-D Point Cloud Classification

Download (6.42 MB)
journal contribution
posted on 2008-01-01, 00:00 authored by Daniel Munoz, Nicolas Vandapel, Martial Hebert
In this paper we address the problem of automated three dimensional point cloud interpretation. This problem is important for various tasks from environment modeling to obstacle avoidance for autonomous robot navigation. In addition to locally extracted features, classifiers need to utilize contextual information in order to perform well. A popular approach to account for context is to utilize the Markov Random Field framework. One recent variant that has successfully been used for the problem considered is the Associative Markov Network (AMN). We extend the AMN model to learn directionality in the clique potentials, resulting in a new anisotropic model that can be efficiently learned using the subgradient method. We validate the proposed approach using data collected from different range sensors and show better performance against standard AMN and Support Vector Machine algorithms.

History

Date

2008-01-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC