Disrupting information coding via block of 4-AP-sensitive potassium channels.
Recent interest has emerged on the role of intrinsic biophysical diversity in neuronal coding. An important question in neurophysiology is understanding which voltage-gated ion channels are responsible for this diversity and how variable expression or activity of one class of ion channels across neurons of a single type affects they way populations carry information. In mitral cells in the olfactory bulb of mice, we found that biophysical diversity was conferred in part by 4-aminopyridine (4-AP)-sensitive potassium channels and reduced following block of those channels. When populations of mitral cells were stimulated with identical inputs, the diversity exhibited in their output spike patterns reduced with the addition of 4-AP, decreasing the stimulus information carried by ensembles of 15 neurons from 437 ± 15 to 397 ± 19 bits/s. Decreases in information were due to reduction in the diversity of population spike patterns generated in response to different features of the stimulus, suggesting that the coding capacity of a population can be altered by changes in the function of single ion channel types.