posted on 2001-06-01, 00:00authored byBarak Pearlmutter
Abstract: "We survey learning algorithms for recurrent neural networks with hidden units and attempt to put the various techniques into a common framework. We discuss fixpoint learning algorithms, namely recurrent backpropagation and deterministic Boltzmann Machines, and non-fixpoint algorithms, namely backpropagation through time, Elman's history cutoff nets, and Jordan's output feedback architecture. Forward propagation, an online technique that uses adjoint equations, is also discussed. In many cases, the unified presentation leads to generalizations of various sorts. Some simulations are presented, and at the end, issues of computational complexity are addressed."