posted on 2005-02-01, 00:00authored byJeremy Kubica, Andrew W Moore, Andrew Connolly, Robert Jedicke
In this paper we examine the problem of spatial data association - identifying which
track/observations pairs could feasibly be associated. Efficiently and accurately finding
these potential associations is vital formost tracking applications, because these associations
both identify which target caused a given observation and update the estimate of
a target’s position and trajectory. However, previous work on efficiently answering this
query often makes the limiting assumption that observations arrive in batches at discrete
time steps. Inmany real world applications this may not be the case. Observations
may arrive individually or in small batches distributed over a range of time. In this paper
we focus on the question of efficiently identifying potential track/observations pairs
in data where the observations can occupy a range of times.
We examine the new data structures and algorithms for efficient spatial data association
on this type of data. We show that it is possible to adapt algorithms designed
for discrete time data, providing the benefits of continuous time while retaining the
tractability of discrete approaches. We introduce a novel data structure for dealing
with large sets of tracks these queries. Empirically we show that these data structures
provide a significant benefit both in decreased computational cost and increased accuracy
when contrasted with treating the observations as arriving at a single time. Further,
we show that in some cases it is more efficient to treat observations that do arrive at
discrete time steps as if it were continuous time data and apply our techniques.