Carnegie Mellon University
Browse

Efficient, Guaranteed Search with Multi-agent Teams

Download (431.04 kB)
journal contribution
posted on 2009-07-01, 00:00 authored by Geoffrey A. Hollinger, Sanjiv Singh, Athanasios Kehagias

Here we present an anytime algorithm for clearing an environment using multiple searchers. Prior methods in the literature treat multi-agent search as either a worst-case problem (i.e., clear an environment of an adversarial evader with potentially infinite speed), or an average-case problem (i.e., minimize average capture time given a model of the target's motion). We introduce an algorithm that combines finite-horizon planning with spanning tree traversal methods to generate plans that clear the environment of a worst-case adversarial target and have good average-case performance considering a target motion model. Our algorithm is scalable to large teams of searchers and yields theoretically bounded average-case performance. We have tested our proposed algorithm through a large number of experiments in simulation and with a team of robot and human searchers in an office building. Our combined search algorithm both clears the environment and reduces average capture times by up to 75% when compared to a purely worst-case approach.

History

Date

2009-07-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC