Carnegie Mellon University
Browse

Efficient Multiple Model Recognition in Cluttered 3-D Scenes

Download (326.13 kB)
journal contribution
posted on 1998-01-01, 00:00 authored by Andrew E. Johnson, Martial Hebert
We present a 3-D shape-based object recognition system for simultaneous recognition of multiple objects in scenes containing clutter and occlusion. Recognition is based on matching surfaces by matching points using the spin-image representation. The spin-image is a data level shape descriptor that is used to match surfaces represented as surface meshes. We present a compression scheme for spin images that results in efficient multiple object recognition which we verify with results showing the simultaneous recognition of multiple objects from a library of 20 models. Furthermore, we demonstrate the robust performance of recognition in the presence of clutter and occlusion through analysis of recognition trials on 100 scenes.

History

Publisher Statement

"©1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE." "This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder."

Date

1998-01-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC