Carnegie Mellon University
Browse

Energy harvesting with stacked dielectric elastomer transducers: Nonlinear theory, optimization, and linearized scaling law

Download (251.66 kB)
journal contribution
posted on 2014-12-01, 00:00 authored by A. Tutcuoglu, Carmel MajidiCarmel Majidi

Using principles of damped harmonic oscillation with continuous media, we examineelectrostatic energy harvesting with a “soft-matter” array of dielectric elastomer (DE) transducers.The array is composed of infinitely thin and deformable electrodes separated by layers of insulating elastomer. During vibration, it deforms longitudinally, resulting in a change in the capacitance and electrical enthalpy of the charged electrodes. Depending on the phase ofelectrostatic loading, the DE array can function as either an actuator that amplifies small vibrations or a generator that converts these external excitations into electrical power. Both cases are addressed with a comprehensive theory that accounts for the influence of viscoelasticity, dielectric breakdown, and electromechanical coupling induced by Maxwellstress. In the case of a linearized Kelvin-Voigt model of the dielectric, we obtain a closed-form estimate for the electrical power output and a scaling law for DE generator design. For the complete nonlinear model, we obtain the optimal electrostatic voltage input for maximum electrical power output.

History

Publisher Statement

© 2014 AIP Publishing LLC

Date

2014-12-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC