Carnegie Mellon University
Browse
file.pdf (765.82 kB)

Experimental Evaluation of Nonlinear Feedback and Feedforward Control Schemes for Manipulators

Download (765.82 kB)
journal contribution
posted on 1987-01-01, 00:00 authored by Pradeep Khosla, Takeo Kanade

The manipulator trajectory tracking control problem revolves around computing the torques to be applied to achieve accurate tracking. While this problem has been extensively studied in simulations, the real-time results have been lacking in the robotics literature. In this paper, we present the experimental results of the real-time performance of model-based control algorithms. We compare the computed-torque control scheme with the feedforward dynamics compensation scheme. The feedforward scheme compensates for the manipulator dynamics in the feedforward path while the computed-torque scheme uses the dynamics in the feedback loop for linearization and decoupling. The manipulator control schemes have been implemented on the CMU DD Arm 11 with a sampling period of 2 ms.

History

Publisher Statement

All Rights Reserved

Date

1987-01-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC