Carnegie Mellon University
Browse
- No file added yet -

Experiments on the Accuracy of Algorithms for Inferring the Structure of Genetic Regulatory Networks from Microarray Expression Levels

Download (157.93 kB)
journal contribution
posted on 2003-01-01, 00:00 authored by Frank C. Wimburly, Thomas Heiman, Joseph Ramsey, Clark Glymour
After reviewing theoretical reasons for doubting that machine learning methods can accurately infer gene regulatory networks from microarray data, we test 10 algorithms on simulated data from the sea urchin network, and on microarray data for yeast compared with recent experimental determinations of the regulatory network in the same yeast species. Our results agree with the theoretical arguments: most algorithms are at chance for determining the existence of a regulatory connection between gene pairs, and the algorithms that perform better than chance are nonetheless so errorprone as to be of little practical use in these applications.

History

Publisher Statement

All Rights Reserved

Date

2003-01-01

Usage metrics

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC