posted on 1985-01-01, 00:00authored byAlon LavieAlon Lavie, Stephan Vogel, Lorraine LevinLorraine Levin, Erik Peterson, Katharina Probst, Ariadna Font-Llitjos, Rachel Reynolds, Jaime G. Carbonell, Richard Cohen
We describe an experiment designed to evaluate the capabilities of our trainable transfer-based (Xfer) machine translation approach, as applied to the task of Hindi-to-English translation, and trained under an extremely limited data scenario. We compare the performance of the Xfer approach with two corpus-based approaches---Statistical MT (SMT) and Example-based MT (EBMT)---under the limited data scenario. The results indicate that the Xfer system significantly outperforms both EBMT and SMT in this scenario. Results also indicate that automatically learned transfer rules are effective in improving translation performance, compared with a baseline word-to-word translation version of the system. Xfer system performance with a limited number of manually written transfer rules is, however, still better than the current automatically inferred rules. Furthermore, a "multiengine" version of our system that combined the output of the Xfer and SMT systems and optimizes translation selection outperformed both individual systems.