File(s) stored somewhere else

Please note: Linked content is NOT stored on Carnegie Mellon University and we can't guarantee its availability, quality, security or accept any liability.

Fabrication of freestanding alginate microfibers and microstructures for tissue engineering applications.

journal contribution
posted on 01.06.2014, 00:00 authored by John M. Szymanski, Adam FeinbergAdam Feinberg

Natural biopolymers such as alginate have become important materials for a variety of biotechnology applications including drug delivery, cell encapsulation and tissue engineering. This expanding use has spurred the development of new approaches to engineer these materials at the nano- and microscales to better control cell interactions. Here we describe a method to fabricate freestanding alginate-based microfibers and microstructures with tunable geometries down to approximately 3 µm. To do this, a polydimethylsiloxane stamp is used to micromold alginate or alginate-fibrin blends onto a sacrificial layer of thermally-sensitive poly(N-isopropylacrylamide) (PIPAAm). A warm calcium chloride solution is then used to crosslink the alginate and, upon cooling below the lower critical solution temperature (~32 °C), the PIPAAm layer dissolves and releases the alginate or alginate-fibrin as freestanding microfibers and microstructures. Proof-of-concept experiments demonstrate that C2C12 myoblasts seeded onto the alginate-fibrin microfibers polarize along the fiber length forming interconnected cell strands. Thus, we have developed the ability to engineer alginate-based microstructured materials that can selectively bind cells and direct cellular assembly.

History

Date

01/06/2014

Usage metrics

Exports