Carnegie Mellon University
Browse

Factorized Graph Matching

Download (5.12 MB)
journal contribution
posted on 2012-06-01, 00:00 authored by Feng Zhou, Fernando de la Torre

Graph matching plays a central role in solving correspondence problems in computer vision. Graph matching problems that incorporate pair-wise constraints can be cast as a quadratic assignment problem (QAP). Unfortunately, QAP is NP-hard and many algorithms have been proposed to solve different relaxations. This paper presents factorized graph matching (FGM), a novel framework for interpreting and optimizing graph matching problems. In this work we show that the affinity matrix can be factorized as a Kronecker product of smaller matrices. There are three main benefits of using this factorization in graph matching: (1) There is no need to compute the costly (in space and time) pair-wise affinity matrix; (2) The factorization provides a taxonomy for graph matching and reveals the connection among several methods; (3) Using the factorization we derive a new approximation of the original problem that improves state-of-the-art algorithms in graph matching. Experimental results in synthetic and real databases illustrate the benefits of FGM. The code is available at http://humansensing.cs.cmu.edu/fgm.

History

Publisher Statement

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Date

2012-06-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC