Carnegie Mellon University
Browse
- No file added yet -

Fast Generalized Subset Scan for Anomalous Pattern Detection

Download (2.63 MB)
journal contribution
posted on 2013-06-01, 00:00 authored by Edward McFowland, Skyler Speakman, Daniel B. Neill

We propose Fast Generalized Subset Scan (FGSS), a new method for detecting anomalous patterns in general categorical data sets. We frame the pattern detection problem as a search over subsets of data records and attributes, maximizing a nonparametric scan statistic over all such subsets. We prove that the nonparametric scan statistics possess a novel property that allows for efficient optimization over the exponentially many subsets of the data without an exhaustive search, enabling FGSS to scale to massive and high-dimensional data sets. We evaluate the performance of FGSS in three real-world application domains (customs monitoring, disease surveillance, and network intrusion detection), and demonstrate that FGSS can successfully detect and characterize relevant patterns in each domain. As compared to three other recently proposed detection algorithms, FGSS substantially decreased run time and improved detection power for massive multivariate data sets.

History

Publisher Statement

Copyright 2013 Edward McFowland III, Skyler Speakman and Daniel B. Neill

Date

2013-06-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC