Carnegie Mellon University
Browse

Filtered Component Analysis to Increase Robustness to Locla Minima in Appearance Models

Download (3.13 MB)
journal contribution
posted on 2007-01-01, 00:00 authored by Fernando De la Torre, Alvaro Collet, Manuel Quero, Jeffery F. Cohn, Takeo Kanade
Appearance Models (AM) are commonly used to model appearance and shape variation of objects in images. In particular, they have proven useful to detection, tracking, and synthesis of people’s faces from video. While AM have numerous advantages relative to alternative approaches, they have at least two important drawbacks. First, they are especially prone to local minima in fitting; this problem becomes increasingly problematic as the number of parameters to estimate grows. Second, often few if any of the local minima correspond to the correct location of the model error. To address these problems, we propose Filtered Component Analysis (FCA), an extension of traditional Principal Component Analysis (PCA). FCA learns an optimal set of filters with which to build a multi-band representation of the object. FCA representations were found to be more robust than either grayscale or Gabor filters to problems of local minima. The effectiveness and robustness of the proposed algorithm is demonstrated in both synthetic and real data.

History

Publisher Statement

"©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE." "This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder."

Date

2007-01-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC