File(s) stored somewhere else

Please note: Linked content is NOT stored on Carnegie Mellon University and we can't guarantee its availability, quality, security or accept any liability.

Fractions: the new frontier for theories of numerical development.

journal contribution
posted on 01.01.2013, 00:00 by Robert SieglerRobert Siegler, Lisa K. Fazio, Drew H. Bailey, Xinlin Zhou

Recent research on fractions has broadened and deepened theories of numerical development. Learning about fractions requires children to recognize that many properties of whole numbers are not true of numbers in general and also to recognize that the one property that unites all real numbers is that they possess magnitudes that can be ordered on number lines. The difficulty of attaining this understanding makes the acquisition of knowledge about fractions an important issue educationally, as well as theoretically. This article examines the neural underpinnings of fraction understanding, developmental and individual differences in that understanding, and interventions that improve the understanding. Accurate representation of fraction magnitudes emerges as crucial both to conceptual understanding of fractions and to fraction arithmetic.