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Using balance laws for microforce and energy in conjunction with constitutive
equations consistent with the second law, a general phase-field theory of solidi-
fication is developed in which gradients of the order parameter enter the consti-
tutive equations for the internal energy and the entropy. The final results consist
of anisotropic and isotropic phase-field equations at various levels of generality.

1. INTRODUCTION

Solidification is often described by a modified Stefan problem—for the devia-

tion u of the temperature from its transition value—in which the free-boundary

conditions

u = (constant) K + (constant) V,
- (1 1)

(latent heat)V = jump in normal heat-flux across the interface,

involve the mean curvature K and normal velocity V of the interface, and conse-

quently lead to problems of great difficulty. For that reason Langer [I],1 Fix [3],

Collins and Levine [4], and Caginalp [5] introduce and study a model in which the

phase of the material is characterized by an order parameter cp, called the phase

field; cp has nearly constant values in each bulk phase and makes a smooth but

rapid transition between phases within a thin transition layer that represents the

sharp interface of the Stefan model.

The phase-field model consists of a modified heat equation

cu" + p(p* = kAu (1.2)

supplemented by a Ginzburg-Landau equation

pep- = fAcp - F'(cp) + pu, (1.3)

where c, k, ^, f, and p are constants, with all but p strictly positive, and F(cp) is a

^Based in a Model C of Halpenn, Hohenberg, and Ma [2].



double-well potential whose "wells" define the phases. The Ginzburg-Landau equa-
tion is based on the assumption that the variational derivative 8$78cp of the
"free-energy functional"

$(u,cp) = J{F(cp) + JflVcpl2 - pu}dv (Q = underlying region of space) (1.4)
Q

be consistent with the relaxation law: pcp# = -63?/6(p.
There are now analytical and computational support for the use of phase-field

models to regularize Stefan-type problems. Soner [6] proves that, modulo a sui-
table scaling, a slightly modified version of the phase-field equations approach the
Stefan system based on (1.1) as the "interface thickness" tends to zero;2 and
computational studies of Caginalp and Socolovsky [15], Koboyashi [16], and
Wheeler et al. [17], among others, demonstrate that phase-field models capture
the qualitative features of solidification, including dendritic growth.

These studies present little information regarding the theoretical status of
phase-field models within the framework of continuum thermodynamics. In fact,
Penrose and Fife [18] and (later) Wang et al. [19], arguing that the derivations
given in [1,3-5] are based on a free-energy functional and therefore applicable
only under isothermal conditions, develop theories based on an entropy functio-
nal. The Ginzburg-Landau equation is derived variationally by Penrose and Fife as
a relaxation law and by Wang et al. using a local formulation of the second law
(the Clausius-Duhem inequality), and it is unclear from either of these deriva-
tions whether the Ginzburg-Landau equation should be viewed as a balance law,
a constitutive equation, or a combination of the two. Concurrently with [19],
Fried and Gurtin [20] develop a framework for theories of phase-field type based
on arguments now common in continuum mechanics in which balance laws are
carefully distinguished from constitutive equations. What is new in [20] is the
introduction of a balance law for microforces3 (defined operationally as forces
that perform work over changes in the order parameter); this force balance leads
to the Ginzburg-Landau equation.

Here, continuing in the spirit of [20], I develop a fairly general class of phase-

^Earlier, Stoth [7,8] established convergence under radial symmetry for u * (constant) K.
Formal asymptotic analyses for the general problem were given in [1,3-5]; see also [9-14]
for formal results relating the phase-field equations to other problems of physical interest.
^Our belief is that kinematic variables introduced to model material microstructure
require additional force and/or moment balances. Such microbalances can be motivated
from statical considerations as Euler-Lagrange equations corresponding to independent
variations of the microstructural kinetic-variables. In [20] we referred to such forces as
accretive; but I now prefer the term microforces.



field models. What made me continue this program is the belief that, although
the models developed in [18] and [19] are internally consistent and result in PDE's
of the correct formal structure, the derivations seem flawed, as they neglect the
internal energy of the interface (gradient energy).4

To explain my reasons for making this assertion consider the first two laws
expressed schematically as

(d/dt){Ebulk + Exs} = , (d /d t )U b u l k + ^ x s } > (1.5)

For a sharp interface Ebulk and &bu]k represent the internal energy and entropy
in bulk, while Exs and >8XS are the energy and entropy of the interface. For a
generalized phase-field theory, the entropy per unit volume is given, constitu-
tively, as a coarse-grain entropy rice(u,cp) plus a gradient entropy ngr(u,(p,Vtp), and
^ b u l k is the integral of ncs(u,(p), while >8XS is the integral of T)Sr(u,c{),V(p); similar
interpretations apply to gbulk and Exs. The usual argument supporting the neg-
lect of interfacial energy seems based on the observation that (I.D2, which ex-
presses balance of energy across the interface, neglects interfacial energy. But
(1.1) are the result of approximating a set of general interface conditions that
include both interfacial energy and entropy, and while interfacial energy is
neglected in (I.D2, it is generally present in (l.l) l f as T typically represents the
free energy at the transition temperature.5

Further, I would generally expect the internal energy and entropy of the
interface to be roughly the same order (at least when the temperature is not too
high), and similarly for the bulk energy and bulk entropy; and it would therefore
seem unsound in a general theory to neglect interfacial energy in the energy
balance (1.5)lf but to retain interfacial entropy in the entropy inequality (1.5)2. I
believe that a more rational procedure6 is to first derive general equations
based on laws of the type (1.5), and then to apply whatever approximations one

^ After completing this study I saw notes of Wang, Sekerka, Wheeler, Murray, Coriell,
Braun, and McFadden establishing an isotropic theory which includes gradient energy.
These notes, which are based on [19], derive the PDE's (1.8).
5Cf., e.g., Mullins and Sekerka [21], Gurtin [22,23].

^An alternative procedure, developed in [23] and used by Fried and Gurtin [20], begins
with an approximation of the general laws (1.6). The chief obstacle is that in (1.6) bulk
terms dominate interfacial terms, so that neglecting lower-order terms results in the omi-
ssion of interfacial effects. What is needed is an inequality with interfacial terms of the
same order as bulk terms. The combination (internal energy) - ( $ o ) (entropy) vanishes in
bulk at the transition temperature Bo. Thus if the entropy inequality is multiplied by £0 and
subtracted from the energy equation, the resulting inequality has both bulk and interfacial
terms small near e0- This inequality is then used (as an approximate second law) in
conjunction with balance of energy assuming Ex s = 0.



wants to the resulting equations.

Using this procedure I derive a hierarchy of phase-field equations at various

levels of generality and approximation. For a material with constant specific heat

c and constant conductivity tensor K, with internal-energy e and entropy r\ given

by constitutive equations

e = ce + E(cp) + Je(m)IV<p|2, X] = cine + S(<p) + is(m)lVcpl2, (1.6)

e = temperature, m = Vcp/IVcpl,

and with f(e,m) := e(m) - es(m), the resulting PDE's are

ce- + [E((p)]' - cp-div[e(m)V(p] + J*2[e(m)]- - div{KVe + \t <p- Smf(e,m).},
e(e,m)(p' = div[e(m)V(p] - ediv[s(m)Vcp] + £div[{ Smf(e,m)] - E'(cp) + eS'((p).

For an isotropic material these PDE's have the simple form7

ce# + [E(cp)]' - ecp'Acp « kAe,
(1 8)

&(e)cp- = f(e)A(p - E'(cp) + es'(cp),

and reduce to equations derived by Penrose and Fife [18] and Wang et. al. [19] if

e=0, s< 0, and ^(e) = epOl and to equations given by Fried and Gurtin [20] if s = 0

and £ = constant. Further, granted suitable approximations, (1.8) reduce to the

original phase-field equations (1.2), (1.3) (cf. the discussion following (4.28)).

2. GENERAL THEORY8

a. Basic equations

The primitive quantities of the theory are the fields

8 internal energy

e absolute temperature

T) entropy

q heat flux

cp order parameter (scalar)

5 microstress (vector)

TT internal microforce (scalar)
7Cf. Footnote 4.
8This section is taken from [20], where arguments in support of (2.1) and (2.3) can be
found.



defined for all time on the region of space Q occupied by the material; the basic

laws are balance of energy

{ Jedv}' = -Jq-nda + JV^nda, (2.1)

R 3R dR

growth of en tropy

{ J n d v } ' > - J(q/e)-nda, (2.2)

R dR

and a microforce balance

J$-nda + J-ndv = 0 (2.3)

dR R
for each control volume R (subregion of Q), where n is the outward unit normal

to dR. These global laws have local forms
e' = -d ivq + div((p"£),

TT = -div(q/e) + y, y > 0, (2.4)

+
 TT = 0,

with tf the entropy production; together they yield the dissipation inequality

-ey < 0, (2.5)

with

+ = e - en (2.6)

the free energy.

An important feature of the thermodynamic structure is the existence of

natural Lyapunov functionals: a direct consequence of (2.1), (2.2), and the second

of (2.4) is that, granted cp'5-n= 0 on 5Q,

{Jedv} ' = 0, { Jridv}' = Jtfdv > 0 if q-n = 0 on 3Q; (2.7)
Q Q Q



{J(e- eon)dv}' = -eojtfdv > 0 if e = e0 = constant on 3Q. (2.8)
Q Q

b. Constitutive equations. Consequences of the dissipation inequality
I consider constitutive equations of the form

v|; = 4>(....), TI = fi(....), q = q(....),

fc ~, . ~( . (2.9)
£ £ ( ) ()

with (....) shorthand for the list

(....) = (e,Ve,cp,Vcp,cp'). (2.10)

A requirement of the theory is that the constitutive relations be compatible
with the dissipation inequality (2.5). Writing

g = Ve, r = e \ p = Vcp, s = cp\ (2.11)

it follows that, for any choice of the fields e(x,t) and cp(x,t),

[ 3 g $ ( . . . . ) ] - g - + 3 s $( - . . . ) s - + e- iqC. - .J -g - - e y < 0. (2.12)

It is possible to find fields e(x,t) and cp(x,t) such that e, g«Ve, g*«Ve\ r=e ' , cp,
s=cp', s" = cp", p=Vcp, and p#ssV(p" have arbitrarily prescribed values at some chosen
point and time. Since (....) = (O,g,cp,p,s), the quantities r, g\ s \ and p' appear line-
arly in (2.12); therefore Qs$ = 0, dgip = 0, Se$ = f|, and 3P4»= %, for otherwise r, g',
s \ and p" could be chosen to violate (2.12). The free energy, entropy, and
microstress are thus independent of g and cp' and related through

Ti(e,cp,Vcp) = -Se$(e,cp,Vcp), ( 2

and the entropy production is given by

= -eTrdls(....)cp' - q(. . . .) .ve > o (2.14)



with

Ttdls(....) = a<p$(e,<p,v<p) + TC(....) (2.15)

the dissipative part of the internal force. The general solution of (2.14) is

( 2 1 6 )

Ttdls(....) = -^(....)cp- - b(....)-Ve,

in which p(....), a scalar kinetic modulus, a(....) and b(. . . .) , vector cross-coupling

coefficients, and K(....), the conductivity tensor, are consistent with

sg-[eb(e,g,cp,p,s) + a(e,g,cp,p,s)] + g-K(e,g,cp,p,s)g > 0. (2.17)

The relations (2.7), (2.13)^ and (2.16)2 yield

Vcp)

as well as a relation for the specific heat:

c(e,tpfv<p) = dB £(e,(p,Vcp) = -eaee^(e,(p,Vcp). (2.19)

c. Generalized phase-field equations

The PDE's of the theory follow upon substituting the thermodynamical ly re -

duced consti tutive relations for e, q, 5, and TT into the local balances for energy

and microforce. Writing

(....) = (e,Ve,cp,Vcp,cp-), (..) = (e,<p,Vcp), (2.20)

these PDE's become

c(..)e* + Sve(..)cp- • 3p£(..)-Vcp- = div{K(....)Ve + [a(....) + Sp(ji(..)] cp-}»

This is the most general system based on constitutive relations (2.9) t h a t are
consistent with the second law in the form of the dissipation inequality (2.5).



d. Decomposition of the heat flux and internal force
The constitutive equations (2.16) show Ve and tp' to be the fields that, in some

sense, most influence q and Tidls; in fact, for e and tp close to constant values e0

and cp0, so that l e - e o l , |Vel, lcp-cpoi, IVcpl, and Itp'l are small, say 0(8),

q(....) = -aocp- -K 0 Ve + O(8), ( 2

Tidls(....) = -po<p- - bo-Ve + O(62),

with a0, Ko, ^o, and b0 constant. An expansion of the form (2.22) holds also for
IVel and Icp'l of 0(8), irrespective of (e,(p,Vcp), but then the coefficients depend on
(e,cp,Vcp). Guided by this, I assume that

(Al) q(....) and Trdls(....) are linear functions of (Ve,(p'):

q(....) = -a(e,cp,Vcp)cp- - K(e,cp,Vcp)Ve,

Tidls(....) = -p(e,cp,Vcp)cp' - b(e,(p,Vcp)-ve.

Note that, by (2.17), the coefficient matrix

aT K
ep eb

is positive semi-definite.
The first of (2.23) yields the decomposition

q = qth + qkm^ qth = -K(e,cp,Vcp)Ve, qkin = -a(e,cp,Vcp)cp' (2.24)

for q as the sum of a (classical) thermal flux q th down a temperature gradient
plus a kinetic flux qkin induced by temporal variations in the order parameter.
Similarly, ndls may be decomposed

^dis s ^th + Trkm> nth = -b(e,(p,Vcp)-ve, Tikin = -p(e,cp,Vcp)cp-, (2.25)

into thermal and kinetic parts Trth and TTkin.
Finally, (2.23) leads to the following relation for the entropy production (2.14):



(p-[eb(e,cp,V(|))-Ve + a(e,cp,V(p)].ve + ve-K(e,cp,Vcp)Ve > 0. (2.26)

3. COMPARISON WITH THE SHARP-INTERFACE THEORY. CONSTITUTIVE RELATION
FOR THE KINETIC HEAT-FLUX

In the theory developed here the phase interface is diffuse, with no sharp
distinction between phases; in a sense each value of the order parameter repre-
sents a particular phase of the material. For that reason sets >&(t) of the form
{(p(x,t) = constant) play an important role, as they represent sets of uniform
phase. I will refer to such sets as uniformity surfaces. Phase transitions are also
described by theories in which the regions occupied by the individual phases are
separated by a phase interface of zero thickness. Such interfaces are sharp.

In applications of the diffuse-interface theory the interface is often thin: solu-
tions are close to particular order-parameter values cp1 and cp2 in regions Q1 and
Q2» 'with the "interface" separating Qa and Q2 resembling a "thin surface"; the
interface is then a collection of closely-packed uniformity surfaces.

Based on these observations, I now use the sharp-interface theory to moti-
vate additional constitutive assumptions that hopefully render the sharp and
diffuse theories asymptotic in the limit of small diffuse-interface thickness. The
essential idea in comparing these theories is a correspondence between unifor-
mity surfaces of the diffuse theory and the interface of the sharp theory.

a. Basic laws for a sharp interface
For comparison purposes I now write the first two laws9 for a sharp inter-

face evolving with (scalar) normal velocity V. Let R be an arbitrary control
volume, let Q = Q(t) denote the portion of the interface in R, let v, a vector field
tangent to the interface, denote the outward unit normal to the boundary curve
3Q, and let VdQ denote the (scalar) normal velocity of this boundary curve in the
direction v. Then balance of energy and growth of entropy for R have the form

{ J e b d v + J e x s d a } ' = - Jq b -nda + jQVd Qds + J(eVda + V c - i » d s ,
R Q 3R 3Q dQ

(3.1)
{jT)bdv + J V s d a } # * - J (q b / e ) .nda + J(Q/e)Vd Qds,

R Q 3R dQ

with e the temperature; eb, T)b, and qb the bulk energy, entropy, and heat flux;
9As developed in [22,23,25].
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exs and TIXS the energy and entropy of the interface; a the surface tension; c, a
vector field tangent to the interface, the surface shear; and Q an apparent heat
flow induced the motion of the interface.

Let

^xs = exs . eT1xs (3 2)

denote the surface free energy. Then10 a=^x s and Q=erixs, so that

JsxsVdQds = jQVdQds + JaVdQds, JV*VaQds = J(Q/e) VaQds, (3.3)
dQ dQ dQ dQ dQ

a result that allows (3.1) to be written in a form

{Jebdv + Je x s da} ' = - Jqb-nda + JexsVaQds + JVc-vds ,
R Q 3R 3Q dQ

(3.4)
{/nMv + JVsda}* ^ - J(qb/e)-nda + JrixsVdQds,

R Q 3R dQ

in which £xsVaQ and TixsVaQ represent fluxes of internal energy and entropy into
R across dQ.

b. Comparison of the sharp and diffuse theories
Bearing in mind (2.24), a comparison of the basic laws (3.1) of the sharp-

interface theory with (2.1) and (2.2) of the diffuse theory seems to indicate the
associations11

sharp interface

J(aVd Q + Vc«v)ds
dQ

Jqb-nda jQV a Qds
3R dQ

order-parameter theory

dR

Jq t h«nda
BR

- Jqkin-nda
dR

(3.5)

(3.6)

To further relate the sharp and diffuse theories it is convenient to write the
basic laws with respect to uniformity surfaces /8(t) = {cp(x,t) = constant}. To ensure
that such surfaces are well defined, I restrict attention to situations with
1(^These identities are consequences of the requirement that the interface be invariant
under reparametrization [25].
1 1 It would be interesting to show that, granted suitable scalings, these associations, (3.12),
and (3.13) are formal asymptotic approximations (cf. [26]).
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« = IVcpl * 0; (3.7)

then

m = Vcp/{, V = -cpV« (3.8)

represent, at each (x,t), a unit normal field and corresponding normal velocity for

the uniformity surface through x at time t.

Let R be a control volume such that, at each t, dR is tangent to uniformity

surfaces at most on a set of zero surface-measure. Choose xcdR and t, let ^(t)

denote the uniformity surface through x, let Q(t) denote the portion of &(t) in R,

and let v(x,t), a vector in the tangent space to /8(t) at x, denote the outward unit

normal to the boundary curve 3Q(t). Then the vectors m, n, and v are coplanar,

and the (intrinsic) velocity of the curve 3G(t) has two components: Vm, which is

normal to /8, and VdQv, which is tangent to >8(t), but normal to 3Q. Let a denote

the angle between m and n and assume that OC*0,TT. Then

n = (cosoc)m + (sinoc)v, cosoc = m-n, VaQ = -Vcotoc. (3.9)

It is convenient to introduce the measure

dA = fsinocda (3.10)

on R. The measure sin a da is the area on 3R projected onto the plane perpendicu-

lar to v; roughly speaking, the multiplier {=|Vcp| allows dA to be written as the

product of a measure dtp and an arc-length measure on the boundary curves dQ.

I now make the following geometric correspondences between the sharp and

diffuse theories:

sharp interface order-parameter theory

interface uniformity surface

v. v, vdQ v , v, vaQ

Using (3.8)-(3.10), the working can be written in the form

JVs-nda = J($-mVdQ - $.vV)dA. (3.11)
dR 8R
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Comparing (3.11) with the last integral in (3.1)1, which represents the working for
the sharp-interface theory, and using the identity a=4>xs, it seems reasonable to
make the associations

sharp interface order-parameter theory

JVc-vds JV^-vda (3.12)
SO dR

J>xsVdQds J*.mVaQda (3.13)
dQ dR

Guided by (3.6) and (3.12), I now presume that that the first two laws (2.1)
and (2.2) can be written in a form that more closely resembles (3.4); namely,12

-Jq th-nda - Jeflx.nda -
R 3R 3R dR

(3.14)
{ Jndv}' > - J(q th/e).nda - JVlx-nda,

R 8R dR

in which there are an energy flux eflx and an entropy flux Tiflx, given by consti-

tu t ive equations

eflx = e f lx(....), x\n* = fiflx(....), (....) = (e,Ve,cf),Vcp,cp-) (3.15)

consistent wi th s tandard the rmodynamics . Precisely, defining the free-energy

flux

+fix = ;j,fix(#_) = gflx(....) - ef) f lx(....), (3.16)

I assume tha t :

(A2) There are vector fields eflx and T|flx, defined by constitutive equations (3.15),

such t h a t the basic laws (2.1) and (2.2) can be rewri t ten as (3.14), and such

t h a t vj;flx(....) generates f)flx(....) through the the rmodynamic relation:

. .) , (3.17)

1 2Within a mechanical theory a free-energy flux of this form was introduced in [27] (Re-
mark 4). Wang et al [19] introduce an entropy flux of this type, but their gradient energy is
isotropic, so they do not need the working term V t,*v.
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In (3.11) 5-m acts as a surface tension within uniformity surfaces that works

against the tangential velocity of Q(t) and hence works to increase the area of

Q(t); thus and by (3.13), it seems reasonable to expect that

dA = - J>flx-nda. (3.18)
dR SR

On the other hand, £(..) = 3p $(..), (.Xe,(p,Vtp); thus (3.11) yields

Jtp-[m«Sp$(..)]m-nda. (3.19)
dR dR

Based on (3.18) and (3.19), I assume that:

(A3) The free-energy flux is given by

p p . (3.20)

Then by (2.6), (2.13)^ (3.16), and (3.17),

finx(e,cp,Vcp,cp*) = -(p'[m-dpTi(e,cp,Vcp)]m, {Z2D

eflx(e,cp,Vcp,cp') = -q)#[m-3p 8(e,cp,Vcp)]m.

b. Constitutive relation for the kinetic heat-flux

In view of (3.18) and the the required equivalency of (2.1) and (2.2) with

(3.14),

- Jeflx-nda = -Jqkm-nda - J>flx-nda, - JV lx.nda = -J(qkin/e)-nda, (3.22)
SR 3R dR dR dR

while (3.16) and (3.22^ imply that

-Jen n x-nda - -Jqkln-nda. (3.23)
dR 3R

The identities (3.22)2 and (3.23), when localized, yield the conclusion (en f lx-

qkin).Ve= 0. By (2.24) and (3.21)lf the constitutive relations for Tiflx and qkin do

not contain Ve as an independent constitutive variable. Thus qkin = OTiflx, which

represents a counterpart of the identity Q=erixs in the sharp-interface theory.

Thus, appealing again to (3.21)1, the kinetic heat-flux is related to the entropy

through the explicit relation
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qkin = -a(e,cp,Vcp)cp\ a(e,cp,Vcp) = e[m-SpTi(e,.cp,Vcp)]m, (3.24)

which is the main result of this section.
Note that qkin(x,t) on 3R vanishes when n(x,t) is perpendicular to m(x,t); in

this case 9Q(t)—the portion in R of the uniformity surface through x—does not
locally add area at x, so there is no apparent heat flow induced by the addition of
area (and hence entropy).

4. THEORY FOR A GRADIENT ENERGY THAT IS HOMOGENEOUS OF DEGREE 2
a. Fur ther simplification of the constitutive equations

I now decompose the constitutive functions for the free energy into a coarse-
grain energy ^cg($,cp) and a gradient energy 4>gr(0,cp,Vcp):

p) + 4>gr(e,cp,Vcp),

p , (4.1)

4>gr(e,cp,Vcp) = ^ ^

and similarly for the internal energy and entropy. Then

= 8cg _ e T 1 c g | +gr = cgr .

Phase-field theories are generally based on free-energies that are quadratic
in Vcp. Here, to model diverse types of anisotropy, I consider the dependence on
Vcp=|Vc|)|m in terms of dependences on I Vcp I and m, with 4;gr^»cP»^(p) quadratic in
IVcpl, but an arbitrary function of m; precisely, I assume that:

(A4) ^gr(e,cp,V(p) is homogeneous13 of degree two in Vcp.

Consequences of (A4), (3.24), (4.1), and (4.2) are that

T)gr(O,cp,Vcp) is homogeneous of degree two in Vcp,

a(e,cp,Vcp) is homogeneous of degree one in Vcp.

The next two hypotheses concern the moduli that govern the production of

i s h o m o g e n e o u s of d e g r e e p if, g i v e n a n y X > 0 , $ ( X z ) « X p $ ( z ) f o r a l l z .
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entropy. Phase-field theories generally have K independent of Vcp, and p depen-
dent on Vcp at most through m. Here I assume that

(A5) p(e,cp,Vcp) and K(e,cp,Vcp) are homogeneous of degree zero in Vcp.

I have little intuition concerning the modulus b(e,cp,Vcp) and therefore assume
only that

(A6) b(9,cp,Vcp) is a homogeneous function of Vcp.

By (A5), (A6), and (4.3), the entropy-production inequality (2.26) may be
written in the form

ep(e,cp,m)(cp')2 + cp-[IVcplkeb(e,cp,m) + IVcpla(e,cp,m)]-Ve +

Ve.K(e,<p,m)Ve > 0, (4.4)

with k the degree of homogeniety of b. This inequality must hold for all e, Ve, cp,
Vcp, and cp'. Therefore IVcp|keb(e,cp,m)+ |Vcp|a(e,cp,m) = 0 for I Vcp I sufficiently large,
for otherwise cp'Ve of appropriate direction would violate (4.4). Thus k=l and

a(e,cp,Vcp) = -eb(e,cp,Vcp), (4.5)

so that, by (2.25) and (3.24),

Tith = -b(e,cp,Vcp)-Ve, b(e,cp,Vcp) = - [m-dpTisr(e,cp,V(p)]m, (4.6)

and both the kinetic heat-flux qkin and the thermal internal-force Ttth are rela-
ted to the gradient entropy. Further, and what is surprising, qkln and nlh do
not contribute to the production of entropy:

e2* = e^(e,tp,m)(cp•)2 + Ve-K(e,cp,m)Ve > 0. (4.7)

b. Phase-field equations
Substituting the expressions in (3.24) and (4.6) for a and b into (2.21) and

using the notation

(..) « (e,cp,Vcp) (4.8)

results in the PDE's
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div{K(..)Ve + [5p^ ( . . ) e (m8 p Ti ( . . ) )m] (p} .

In view of (A4), the gradient free-energy ty*r may be written in the form

4>gr(e,cp,Vcp) = i?2f(e,cp,m) (4.10)

(the £ being for convenience), so that

egr(e,(p,Vcp) = i{2e(e,(p,m), Ti8r(e,cp,Vcp) = i {2s(e,(p,m),

f(e,(p,m) = e(e,(p,m) - es(e,cp,m), s(e,cp,m) = -9ef(e,cp,m), (4.11)

c(e,cp,Vcp) = a

and, by (3.24) and (4.6),

qkm = -a(e,ip,Vcp)cp\ a(e,cp,Vcp) = es(e,cp,m)Vcp,
(4 12)Tith = -b(e,(p,Vcp)-Ve, b(©,cp,Vcp) * -s(e,cp,m)Vcp.

Further,

^ = dp^
gr(o,cp,Vcp) = f(e,(p,m)Vcp + c(e,cp,m), (4.13)

with

c(e,cp,m) = Jt9mf(^.Vtm) (4.14)

orthogonal to m. In (3.11), ^•v = c*f works against the normal velocity V; hence
c(e,cp,m) represents microshearing stresses within uniformity surfaces (cf. (3.12)).

Let

(..) = (e,cp,Vcp), (*) = (e,(p,m). (4.15)

By (4.14) and its counterpart for egr,

p * = e(*)Vcp-Vcp#

div[(p#e(*)V(p] = e(«)Vcp-Vcp' + cp*div[e(*)Vcp], (4.16)

e(«)Vcp + c(«);
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hence, appealing to the analog of (4.13) for r\*r, (4.9) may also be written as

c(..)e' + 3<p£(..)cp# - cp-div[e(«)V(p] +

div{K(«)Ve + cp'c(*)}, (4.17)

p(«)cp# = div[e(«)Vcp] - ediv[s(«)V(p] + divc(*) - 3cp$(..).

If (4.17)2 is multiplied by cp# and then subtracted from (4.17)!, using (2.6) and
(4.14), the result is an alternative form for (4.17)a (in which, roughly speaking,
entropy rather than energy is balanced):

jpfiC.Jcp' - ecp#div[s(*)Vcp]

div{K(*)Ve} + p(*)(cp-)2. (4.18)

The general equations derived above are complicated. The next section
develops two simpler theories: one anisotropic with specific heat and conductivity
constant; the other isotropic with specific heat and conductivity allowed to
depend on the order parameter.

5. SIMPLIFIED THEORIES
a. Anisotropic theory with constant specific heat and conductivity

If the specific heat c is constant, then, by (2.13), (2.19), (4.1), and (4.2),

ecs(e,cp) = ce + E(cp),

T)cs(e,cj)) = cine + S(cp), (5.1)

- es(cp),

while e*r and T\*r are independent of e. If, in addition, \\>%r and (hence) z*r and
are independent of (p, then

(5.2)

Assuming that (5.1) and (5.2) hold, and that the conductivity tensor K is constant
and the kinetic modulus p depends only on m, the PDE's (4.9) become
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# = div{KVe+ [Sp^(e,V(p) + ©(m.3pTie(V(p))m](p}.
\0.

p(m)cp- = div{3p^er(e>V(p)} - E'(cp) + eS'(cp) + m-3 p

Further, since (5.2) has the alternative form

f(e,m) = e(m) - es(m), (5.4)

(4.17) reduces to

ce- +[E(cp)]' - cp-div[e(m)Vcp] + i{2[e(m)]' = div{KVe + \ 8 cp- 3mf(e,m)},
v 0.0)

p(m)cp' = div[e(m)V(p] - ediv[s(m)Vcp] + £div [{ dmf (efm)] - E'(cp) + eS'(cp).

while (4.18) becomes

ce- + o[S(cp)]' - ecp'div[s(m)Vcp] + }el2[s(m)]* = div{KVe} + p(m)(cp-)2. (5.6)

b. Isotropic theory
Returning to the general theory of Section 4b, if the material is isotropic,

K(«) = k(e,cp)l, p(«) = p(e,cp), e(*) = e(e,cp),

s(«) - s(e,cp), f(«) = f(e,cp), c(«) = 0, ( 5 7 )

and if p(o), e(e), and s(e) are independent of the order parameter , then, since

div[e(e)Vcp] - ediv[s(e)Vcp] = f(e)Atp (5.8)

(cf. (4.11)), (4.17) reduce to

c(e,cp,Vcp)e- + 9<pecs(e,q>)cp* - cp-div[e(e)Vcp] = div[k(e,(p)Ve],
p

(5 9)
p(e)cp' = f(e)Acp - a ^ c 8 ( e )

while (4.18) becomes

c(e,cp,V(p)e' + eS(pTic8(e,(p)cp- - eq)-div[s(e)Vcp] = div[k(e,cp)Ve] + p(e)((p-)2. (5.10)

The PDE's (5.9), although restricted to isotropic materials, are quite general. Note



tha t , by the last of (4.11), the specific heat c(e,cp,Vcp) is the sum of a coarse-grain
specific-heat 3ee

c^(e,(p) and a gradient specific-heat £ { 2 8 e e ( e , m ) .
A s tandard assumption is t ha t the specific heat c(cp) depends only on the

order parameter . Granted this, (2.13), (2.19), (4.1), and (4.2) yield

ec*(e,cp) = c(cp)e + E(cp),

) = c(cp)lne + S(cp),
(5 11)

p) = c(cp)e(l - l n e ) + E(cp) - eS(cp),

f(e) = e - es, e, s = constant,

and (5.9) become

c(cp)e- + e[c(cp)]" + [E(qO]' - ecp'Acp = div[k(e,(p)Ve],

p(e)cp" = f(e)Acp + c*(cp)(elne-e) - E'(cp) + es'(cp),

with (5.12)1 equivalent to (cf. (5.10))

c(cp)e* + elne[c(cp)]# + e[S(cp)]' - escp-Acp = div[k(e,cp)Ve] + p(e)(cp")2. (5.13)

Finally, for c and k constant,

ce* + [E(cp)]' - ecp'Acp = kAO,
(5 lA)1^

p(e)q>- = f(e)Acp - E'(cp) + eS'(cp),

with (5.14)1 equivalent to

ce- + e[S(cp)]' - escp-Acp = kAe + p(e)(cp-)2. (5.15)

Generally, vpcs(e,cp), as a function of cp, is a double-well potential in which each
well has a strict minimum and for which one well furnishes a global minimum
for B<B0 and the other for 9>e0, with e0 the transition temperature. Granted this
I may, without loss in generality, assume that the minima at e= e0 occur at cp = 0
and cp = 1. Then 4>cB(e0,0) * v^cs(e0,l) and, granted the assumptions leading to (5.14),

E(l) - E(0) = eo(S(l) - SCO)). (5.16)
1 ^ After completing this workl saw notes notes of Wang, Sekerka, Wheeler, Murray,
Coriell, Braun, and McFadden in which these equations are derived.
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Consider (5.14)2 and (5.15) with the terms involving (p'Vcp and (<p*)2 neglected,
with p(e), f(e), and e[S(cp)]' approximated by ^(eo)> f(e0), and eo[S((p)]\ and with

E(cp)-e0S(cp) = ±X[tp(l - cp)]2 =: e0F(cp), S(cp) = pep, (X,p>0). (5.17)

Define u = ( e - e o ) / e o , £ = p(eo)/eo, and F= f(eo)/eo. Then, dropping the overbars,
the resulting PDE's are the original phase-field equations (1.2) and (1.3). Here
there seems to be an ambiguity, since the equivalent approximations in (5.14)!
yield (1.2) with pcp'(« [S((p)]') replaced by [E(cp)]'/e0; because of (5.16), for a
sufficiently thin interface this difference should have negligible effect.

If gradient energy is neglected, if s< 0, and if p(e) = ep0, then (5.14) reduce to

ce ' + [E(cp)]# = kAe, ôcp* = IslAcp - e^E'tcp) + S'(cp), (5.18)

which are the equations derived by Penrose and Fife [18] (eqs. (6.1), (6.2)) and
Wang et. al. [19] (eqts. (32), (33)). On the other hand, neglecting, instead, gradient
entropy, and assuming that p is constant, leads to

ce1 + e[S(cp)]' = kAe + p(e)(cp*)2., pep' = eAcp - E'(cp) + eS'(cp), (5.19)

which is given by Fried and Gurtin [20].
Finally, for a discussion of specific models the reader is referred to references

[15-20].
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