Carnegie Mellon University
Browse

Geometric Complexity

journal contribution
posted on 1975-01-01, 00:00 authored by Michael I. Shamos
The complexity of a number of fundamental problems in computational geometry is examined and a number of new fast algorithms are presented and analyzed. General methods for obtaining results in geometric complexity are given and upper and lower bounds are obtained for problems involving sets of points, lines, and polygons in the plane. An effort is made to recast classical theorems into a useful computational form and analogies are developed between constructibility questions in Euclidean geometry and computability questions in modern computational complexity.

History

Publisher Statement

All Rights Reserved

Date

1975-01-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC