Carnegie Mellon University
Browse

Graph-Based Lexicon Expansion with Sparsity-Inducing Penalties

Download (531.61 kB)
journal contribution
posted on 2012-06-01, 00:00 authored by Dipanjan Das, Noah A. Smith

We present novel methods to construct compact natural language lexicons within a graphbased semi-supervised learning framework, an attractive platform suited for propagating soft labels onto new natural language types from seed data. To achieve compactness, we induce sparse measures at graph vertices by incorporating sparsity-inducing penalties in Gaussian and entropic pairwise Markov networks constructed from labeled and unlabeled data. Sparse measures are desirable for high-dimensional multi-class learning problems such as the induction of labels on natural language types, which typically associate with only a few labels. Compared to standard graph-based learning methods, for two lexicon expansion problems, our approach produces significantly smaller lexicons and obtains better predictive performance.

History

Publisher Statement

Copyright 2012 ACL

Date

2012-06-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC