Carnegie Mellon University
Browse
- No file added yet -

Group Anomaly Detection using Flexible Genre Models

Download (1.04 MB)
journal contribution
posted on 2011-12-01, 00:00 authored by Liang Xiong, Barnabas Poczos, Jeff Schneider

An important task in exploring and analyzing real-world data sets is to detect unusual and interesting phenomena. In this paper, we study the group anomaly detection problem. Unlike traditional anomaly detection research that focuses on data points, our goal is to discover anomalous aggregated behaviors of groups of points. For this purpose, we propose the Flexible Genre Model (FGM). FGM is designed to characterize data groups at both the point level and the group level so as to detect various types of group anomalies. We evaluate the effectiveness of FGM on both synthetic and real data sets including images and turbulence data, and show that it is superior to existing approaches in detecting group anomalies.

History

Date

2011-12-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC