Carnegie Mellon University
Browse

Image Matching with Distinctive Visual Vocabulary

Download (5.72 MB)
journal contribution
posted on 2011-01-01, 00:00 authored by Hongwen Kang, Martial Hebert, Takeo Kanade

In this paper we propose an image indexing and matching algorithm that relies on selecting distinctive high dimensional features. In contrast with conventional techniques that treated all features equally, we claim that one can benefit significantly from focusing on distinctive features. We propose a bag-of-words algorithm that combines the feature distinctiveness in visual vocabulary generation. Our approach compares favorably with the state of the art in image matching tasks on the University of Kentucky Recognition Benchmark dataset and on an indoor localization dataset. We also show that our approach scales up more gracefully on a large scale Flickr dataset.

History

Date

2011-01-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC