Carnegie Mellon University
Browse

Imperfect-Recall Abstractions with Bounds

Download (316.06 kB)
journal contribution
posted on 2003-09-01, 00:00 authored by Christian Kroer, Tuomas W Sandholm

We develop the first general, algorithm-agnostic, solution quality guarantees for Nash equilibria and approximate self-trembling equilibria computed in imperfect-recall abstractions, when implemented in the original (perfect-recall) game. Our results are for a class of games that generalizes the only previously known class of imperfect-recall abstractions where any results had been obtained. Further, our analysis is tighter in two ways, each of which can lead to an exponential reduction in the solution quality error bound. We then show that for extensive-form games that satisfy certain properties, the problem of computing a bound-minimizing abstraction for a single level of the game reduces to a clustering problem, where the increase in our bound is the distance function. This reduction leads to the first imperfect-recall abstraction algorithm with solution quality bounds. We proceed to show a divide in the class of abstraction problems. If payoffs are at the same scale at all information sets considered for abstraction, the input forms a metric space, and this immediately yields a 2-approximation algorithm for abstraction. Conversely, if this condition is not satisfied, we show that the input does not form a metric space. Finally, we provide computational experiments to evaluate the practical usefulness of the abstraction techniques. They show that running counterfactual regret minimization on such abstractions leads to good strategies in the original games.

History

Publisher Statement

"©2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE."

Date

2003-09-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC