Carnegie Mellon University
Browse

File(s) not publicly available

Implicit self-adjusting computation for purely functional programs

journal contribution
posted on 1985-01-01, 00:00 authored by Yan Chen, Jana Dunfield, Matthew A. Hammer, Umut A. Acar

Computational problems that involve dynamic data, such as physics simulations and program development environments, have been an important subject of study in programming languages. Building on this work, recent advances in self-adjusting computation have developed techniques that enable programs to respond automatically and efficiently to dynamic changes in their inputs. Self-adjusting programs have been shown to be efficient for a reasonably broad range of problems, but the approach still requires an explicit programming style, where the programmer must use specific monadic types and primitives to identify, create, and operate on data that can change over time. We describe techniques for automatically translating purely functional programs into self-adjusting programs. In this implicit approach, the programmer need only annotate the (top-level) input types of the programs to be translated. Type inference finds all other types, and a type-directed translation rewrites the source program into an explicitly self-adjusting target program. The type system is related to information-flow type systems and enjoys decidable type inference via constraint solving. We prove that the translation outputs well- typed self-adjusting programs and preserves the source program's input–output behavior, guaranteeing that translated programs respond correctly to all changes to their data. Using a cost semantics, we also prove that the translation preserves the asymptotic complexity of the source program.

History

Publisher Statement

Copyright © Cambridge University Press 2014

Date

2014-03-31

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC