Carnegie Mellon University
Browse

Improving Cost Estimation in Market-Based Coordination of a Distributed Sensing Task

Download (351.28 kB)
journal contribution
posted on 2005-01-01, 00:00 authored by M. Bernardine Dias, Bernard Ghanem, Anthony Stentz
While market-based approaches, such as TraderBots, have shown much promise for efficient coordination of multirobot teams, the cost estimation mechanism and its impact on solution efficiency has not been investigated. This paper provides a first analysis of the cost estimation process in the TraderBots approach applied to a distributed sensing task. In the presented implementation, path costs are estimated using the D* path-planning algorithm with optimistic costing of unknown map-cells. The reported results show increased team efficiency when cost estimates reflect different environmental and mission characteristics. Thus, this paper demonstrates that market-based approaches can improve team efficiency if cost estimates take into account environmental and mission characteristics. These findings encourage future research on applying learning techniques for on-line modification of cost estimation and in market-based coordination.

History

Publisher Statement

"©2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE." "This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder."

Date

2005-01-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC