Carnegie Mellon University
Browse

Indoor People Tracking Based on Dynamic Weighted MultiDimensional Scaling

Download (690.32 kB)
journal contribution
posted on 2007-01-01, 00:00 authored by Jose Maria Cabero, Fernando De la Torre, Aritz Sanchez, Inigo Aziaga
Accurate location of people in indoor environments is a key aspect of many applications such as resource management or security. In this paper, we explore the use of short-range radio technologies to track people indoors. The network consists of two kind of radio nodes: static nodes (anchors) and mobile nodes (people). From a set of sparse connectivity matrices (people vs. people and people vs. anchors) at each time instant and people's dynamics, we infer people's trajectories. To combine connectivity and dynamic information, we propose an extension of Multidimensional Scaling (MDS), Dynamic Weighted MDS (DWMDS), that finds an embedding of people's trajectories (x and y coordinates of people through time). DWMDS has proven to be more ac- curate and effective, especially for low connectivity degree networks (i.e. sparse networks), compared to existing location algorithms. Extensive simulations show the effectiveness and robustness of the proposed algorithm.

History

Date

2007-01-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC