Carnegie Mellon University
Browse

Intelligent Maps for Autonomous Kilometer-Scale Science Survey

Download (740.54 kB)
journal contribution
posted on 2008-02-01, 00:00 authored by David R. Thompson, David Wettergreen

We present a new approach for remote exploration by autonomous surface robots. In our method the agent synthesizes in situ measurements with remote sensing data to learn a multi-scale model of the explored environment. This "intelligent map" predicts the information value of candidate observations to guide adaptive navigation and sampling decisions. The agent learns map parameters on the fly, modifying its exploration behavior in response to novel correlations, resource constraints and execution errors. Rover tests at Amboy Crater, California demonstrate improved performance over non-adaptive strategies for a geologic site survey task.

History

Date

2008-02-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC