Carnegie Mellon University
Browse

Language Model for IR Using Collection Information

Download (211.54 kB)
journal contribution
posted on 1985-01-01, 00:00 authored by Rong Jin, Luo Si, Alexander Hauptmann, James CallanJames Callan
Information retrieval using meta data can be traced back to the early age of IR where documents are represented by the controlled vocabulary. In this paper, we explore the usage of meta-data information under the framework of language model. We present a new language model that is able to take advantage of the category information for documents to improve the retrieval accuracy. We compare the new language model with the traditional language model over the TREC4 dataset where the collection information for documents is obtained using the k-means clustering method. The new language model outperforms the traditional language model, which verifies our statement.

History

Publisher Statement

All Rights Reserved

Date

1985-01-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC