Carnegie Mellon University
Browse

Learning Geometric Concepts via Gaussian Surface Area

Download (305.09 kB)
journal contribution
posted on 1971-01-01, 00:00 authored by Adam R. Klivans, Ryan O'Donnell, Rocco Servedio
We study the learnability of sets in Rn under the Gaussian distribution, taking Gaussian surface area as the “complexity measure” of the sets being learned. Let CS denote the class of all (measurable) sets with surface area at most S. We first show that the class CS is learnable to any constant accuracy in time nO(S2), even in the arbitrary noise (“agnostic”) model. Complementing this, we also show that any learning algorithm for CS information-theoretically requires 2Ω(S2) examples for learning to constant accuracy. These results together show that Gaussian surface area essentially characterizes the computational complexity of learning under the Gaussian distribution.

History

Publisher Statement

All Rights Reserved

Date

1971-01-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC