Learning Rough-Terrain Autonomous Navigation
Autonomous navigation by a mobile robot through L natural, unstructured terrain is one of the premier k challenges in field robotics. Tremendous advances V in autonomous navigation have been made recently in field robotics. Machine learning has played an increasingly important role in these advances. The Defense Advanced Research Projects Agency (DARPA) UGCV-Perceptor Integration (UPI) program was conceived to take a fresh approach to all aspects of autonomous outdoor mobile robot design, from vehicle design to the design of perception and control systems with the goal of achieving a leap in performance to enable the next generation of robotic applications in commercial, industrial, and military applications. The essential problem addressed by the UPI program is to enable safe autonomous traverse of a robot from Point A to Point B in the least time possible given a series of waypoints in complex, unstructured terrain separated by 0.2-2 km. To accomplish this goal, machine learning techniques were heavily used to provide robust and adaptive performance, while simultaneously reducing the required development and deployment time. This article describes the autonomous system, Crusher, developed for the UPI program and the learning approaches that aided in its successful performance.