Carnegie Mellon University
Browse

Learning Word Representations with Hierarchical Sparse Coding

Download (854.95 kB)
journal contribution
posted on 2015-06-01, 00:00 authored by Dani Yogatama, Manaal Faruqui, Chris Dyer, Noah A. Smith

We propose a new method for learning word representations using hierarchical regularization in sparse coding inspired by the linguistic study of word meanings. We show an efficient learning algorithm based on stochastic proximal methods that is significantly faster than previous approaches, making it possible to perform hierarchical sparse coding on a corpus of billions of word tokens. Experiments on various benchmark tasks—word similarity ranking, syntactic and semantic analogies, sentence completion, and sentiment analysis—demonstrate that the method outperforms or is competitive with state-of-the-art methods.

History

Publisher Statement

Copyright 2015 by the author(s).

Date

2015-06-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC