Carnegie Mellon University
Browse
- No file added yet -

Learning and applying contextual constraints in sentence comprehension

Download (4.2 MB)
journal contribution
posted on 1988-01-01, 00:00 authored by Mark St. John, James L. McClelland, Artificial Intelligence and Psychology Project.
Abstract: "A parallel distributed processing model is described that learns to comprehend single clause sentences. Specifically, it assigns thematic roles to sentence constituents, disambiguates ambiguous words, instantiates vague words, and elaborates implied roles. The sentences are pre-segmented into constituent phrases. Each constituent is processed in turn to update an evolving representation of the event described by the sentence. The model uses the information derived from each constituent to revise its on-going interpretation of the sentence and to anticipate additional constituents. The network learns to perform these tasks through practice on processing example sentence/event pairs.The learning procedure allows the model to take a long-range statistical approach to solving the bootstrapping problem of learning the syntax and semantics of a language from the same data. The model performs very well on the corpus of sentences on which it was trained, but learns slowly."

History

Publisher Statement

All Rights Reserved

Date

1988-01-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC