Carnegie Mellon University
Browse

Learning by Demonstration with Critique from a Human Teacher

Download (551.06 kB)
journal contribution
posted on 2007-01-01, 00:00 authored by Brenna Argall, Brett Browning, Manuela M. Veloso
Learning by demonstration can be a powerful and natural tool for developing robot control policies. That is, instead of tedious hand-coding, a robot may learn a control policy by interacting with a teacher. In this work we present an algorithm for learning by demonstration in which the teacher operates in two phases. The teacher first demonstrates the task to the learner. The teacher next critiques learner performance of the task. This critique is used by the learner to update its control policy. In our implementation we utilize a 1-Nearest Neighbor technique which incorporates both training dataset and teacher critique. Since the teacher critiques performance only, they do not need to guess at an effective critique for the underlying algorithm. We argue that this method is particularly well-suited to human teachers, who are generally better at assigning credit to performances than to algorithms. We have applied this algorithm to the simulated task of a robot intercepting a ball. Our results demonstrate improved performance with teacher critiquing, where performance is measured by both execution success and efficiency.

History

Publisher Statement

Copyright © 2007 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org. © ACM, 2007. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in the Proceedings of the ACM/IEEE international conference on Human-robot interaction {978-1-59593-617-2 (2007)} http://doi.acm.org/10.1145/1228716.1228725

Date

2007-01-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC