Carnegie Mellon University
Browse

Learning intersections and thresholds of halfspaces

Download (378.04 kB)
journal contribution
posted on 1984-01-01, 00:00 authored by Adam R. Klivans, Ryan O'Donnell, Rocco A. Servedio
We give the first polynomial time algorithm to learn any function of a constant number of halfspaces under the uniform distribution on the Boolean hypercube to within any constant error parameter. We also give the first quasipolynomial time algorithm for learning any Boolean function of a polylog number of polynomial-weight halfspaces under any distribution on the Boolean hypercube. As special cases of these results we obtain algorithms for learning intersections and thresholds of halfspaces. Our uniform distribution learning algorithms involve a novel non-geometric approach to learning halfspaces; we use Fourier techniques together with a careful analysis of the noise sensitivity of functions of halfspaces. Our algorithms for learning under any distribution use techniques from real approximation theory to construct low-degree polynomial threshold functions. Finally, we also observe that any function of a constant number of polynomial-weight halfspaces can be learned in polynomial time in the model of exact learning from membership and equivalence queries.

History

Publisher Statement

All Rights Reserved

Date

1984-01-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC