Carnegie Mellon University
file.pdf (846.64 kB)

Linear quadratic optimal control design using Chebyshev-based state parameterization

Download (846.64 kB)
journal contribution
posted on 1992-01-01, 00:00 authored by Ssu-Kei Wang, Mark L. Nagurka, Carnegie Mellon University.Engineering Design Research Center.
Abstract: "A computationally attractive method for determining the optimal control of unconstrained linear dynamic systems with quadratic performance indices is presented. In the proposed method, the difference between each state variable and its initial condition is represented by a finite-term shifted Chebyshev series. The representation leads to a system of linear algebraic equations as the necessary condition of optimality. Simulation studies demonstrate computational advantages relative to a standard Riccati-based method, a transition matrix method, and a previous Fourier-based method."


Publisher Statement

All Rights Reserved



Usage metrics