Carnegie Mellon University
Browse

Minimal Inequalities for an Infinite Relaxation of Integer Programs

Download (195.61 kB)
journal contribution
posted on 2008-10-01, 00:00 authored by Amitabh Basu, Michele Conforti, Gerard CornuejolsGerard Cornuejols, Giacomo Zambelli
We show that maximal S-free convex sets are polyhedra when S is the set of integral points in some rational polyhedron of Rn. This result extends a theorem of Lovász characterizing maximal lattice-free convex sets. We then consider a model that arises in integer programming, and show that all irredundant inequalities are obtained from maximal S-free convex sets.

History

Publisher Statement

All Rights Reserved

Date

2008-10-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC