Carnegie Mellon University
Browse
- No file added yet -

Mix-nets: Factored Mixtures of Gaussians in Bayesian Networks with Mixed Continuous And Discrete Variables

Download (396.3 kB)
journal contribution
posted on 2000-04-01, 00:00 authored by Scott Davies, Andrew W Moore
Recently developed techniques have made it possible to quickly learn accurate probability density functions from data in low-dimensional continuous spaces. In particular, mixtures of Gaussians can be fitted to data very quickly using an accelerated EM algorithm that employs multi-resolution kdtrees (Moore, 1999). In this paper, we propose a kind of Bayesian network in which low-dimensional mixtures of Gaussians over different subsets of the domain's variables are combined into a coherent joint probability model over the entire domain. The network is also capable of modelling complex dependencies between discrete variables and continuous variables without requiring discretization of the continuous variables. We present efficient heuristic algorithms for automatically learning these networks from data, and perform comparative experiments illustrating how well these networks model real scientific data and synthetic data. We also briefly discuss some possible improvements to the networks, as well as their possible application to anomaly detection, classification, probabilistic inference, and compression.

History

Publisher Statement

All Rights Reserved

Date

2000-04-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC