Carnegie Mellon University
Browse
- No file added yet -

Modeling Users’ Mobile App Privacy Preferences: Restoring Usability in a Sea of Permission Settings

Download (1008.03 kB)
journal contribution
posted on 2014-07-01, 00:00 authored by Jialiu Lin, Bin Liu, Norman SadehNorman Sadeh, Jason I. Hong

In this paper, we investigate the feasibility of identifying a small set of privacy profiles as a way of helping users manage their mobile app privacy preferences. Our analysis does not limit itself to looking at permissions people feel comfortable granting to an app. Instead it relies on static code analysis to determine the purpose for which an app requests each of its permissions, distinguishing for instance between apps relying on particular permissions to deliver their core functionality and apps requesting these permissions to share information with advertising networks or social networks. Using privacy preferences that reflect people’s comfort with the purpose for which different apps request their permissions, we use clustering techniques to identify privacy profiles. A major contribution of this work is to show that, while people’s mobile app privacy preferences are diverse, it is possible to identify a small number of privacy profiles that collectively do a good job at capturing these diverse preferences.

History

Publisher Statement

Copyright is held by the author/owner. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

Date

2014-07-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC