Carnegie Mellon University
Browse

N-best Speech Hypotheses Reordering Using Linear Regression

Download (68.52 kB)
journal contribution
posted on 2007-09-01, 00:00 authored by Ananlada Chotimongkol, Alexander RudnickyAlexander Rudnicky

We propose a hypothesis reordering technique to improve speech recognition accuracy in a dialog system. For such systems, additional information external to the decoding process itself is available, in particular features derived from
the parse and the dialog. Such features can be combined with recognizer features by means of a linear regression model to predict the most likely entry in the hypothesis list. We introduce the use of concept error rate as an alternative accuracy measurement and compare it withy the use of word error rate. The proposed model performs better than human subjects performing the same hypothesis reordering task.

History

Publisher Statement

All Rights Reserved

Date

2007-09-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC