Carnegie Mellon University
Browse

Neural correlates of arithmetic calculation strategies

journal contribution
posted on 2009-09-01, 00:00 authored by Miriam Rosenberg-Lee, Marsha LovettMarsha Lovett, John R. Anderson

Recent research into math cognition has identified areas of the brain that are involved in number processing (Dehaene, Piazza, Pinel, & Cohen, 2003) and complex problem solving (Anderson, 2007). Much of this research assumes that participants use a single strategy; yet, behavioral research finds that people use a variety of strategies (LeFevre et al., 1996; Siegler, 1987; Siegler & Lemaire, 1997). In the present study, we examined cortical activation as a function of two different calculation strategies for mentally solving multidigit multiplication problems. The school strategy, equivalent to long multiplication, involves working from right to left. The expert strategy, used by “lightning” mental calculators (Staszewski, 1988), proceeds from left to right. The two strategies require essentially the same calculations, but have different working memory demands (the school strategy incurs greater demands). The school strategy produced significantly greater early activity in areas involved in attentional aspects of number processing (posterior superior parietal lobule, PSPL) and mental representation (posterior parietal cortex, PPC), but not in a numerical magnitude area (horizontal intraparietal sulcus, HIPS) or a semantic memory retrieval area (lateral inferior prefrontal cortex, LIPFC). An ACT-R model of the task successfully predicted BOLD responses in PPC and LIPFC, as well as in PSPL and HIPS.

History

Date

2009-09-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC