Carnegie Mellon University
Browse

Nonlinear Interpolation of Topic Models for Language Model Adaptation

Download (57.41 kB)
journal contribution
posted on 2001-01-01, 00:00 authored by Kristie Seymore, Stanley F Chen, Roni Rosenfeld

Topic adaptation for language modeling is concerned with adjusting the probabilities in a language model to better reflect the expected frequencies of topical words for a new document. The language model to be adapted is usually built from large amounts of training text and is considered representative of the current domain. In order to adapt this model for a new document, the topic (or topics) of the new document are identified. Then, the probabilities of words that are more likely to occur in the identified topic(s) than in general are boosted, and the probabilities of words that are unlikely for the identified topic(s) are suppressed. We present

History

Date

2001-01-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC