Object Search by Manipulation
We investigate the problem of a robot searching for an object. This requires reasoning about both perception and manipulation: certain objects are moved because the target may be hidden behind them and others are moved because they block the manipulator's access to other objects. We contribute a formulation of the object search by manipulation problem using visibility and accessibility relations between objects. We also propose a greedy algorithm and show that it is optimal under certain conditions. We propose a second algorithm which is optimal under all conditions. This algorithm takes advantage of the structure of the visibility and accessibility relations between objects to quickly generate optimal plans. Finally, we demonstrate an implementation of both algorithms on a real robot using a real object detection system.