Carnegie Mellon University
Browse

Obtaining Information while Preserving Privacy: A Markov Perturbation Method for Tabular Data

journal contribution
posted on 1998-01-01, 00:00 authored by George T. Duncan, Stephen E. Feinberg
Preserving privacy appears to conflict with providing information. Statistical information can, however, be provided while preserving a specified level of confidentiality protection. The general approach is to provide disclosure-limited data that maximizes its statistical utility subject to confidentiality constraints. Disclosure limitation based on Markov chain methods that respect the underlying uncertainty in real data is examined. For use with categorical data tables a method called Markov perturbation is proposed as an extension of the PRAM method of Kooiman, Willenborg, and Gouweleeuw (1997). Markov perturbation allows cross-classified marginal totals to be maintained and promises to provide more information than the commonly used cell suppression technique.

History

Date

1998-01-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC