file.pdf (3.07 MB)
Download fileOddBall: Spotting Anomalies in Weighted Graphs
journal contribution
posted on 2011-02-01, 00:00 authored by Leman Akoglu, Mary McGlohon, Christos FaloutsosGiven a large, weighted graph, how can we find anomalies? Which rules should be violated, before we label a node as an anomaly? We propose the oddball algorithm, to find such nodes. The contributions are the following: (a) we discover several new rules (power laws) in density, weights, ranks and eigenvalues that seem to govern the so-called “neighborhood sub-graphs” and we show how to use these rules for anomaly detection; (b) we carefully choose features, and design oddball, so that it is scalable and it can work un-supervised (no user-defined constants) and (c) we report experiments on many real graphs with up to 1.6 millionnodes, where oddball indeed spots unusual nodes that agree with intuition.